Bahr & Gatto Presentation 1759

Mouth and Airway Development, Disorders, Assessment, and Treatment: Birth to Age 7
Diane Bahr, CCC-SLP, CIMI & Kristie Gatto, CCC-SLP, COM
Session 1759, Intermediate Level, Professional Education, Saturday, November 11, 2017 2:30-3:30 PM

Speech-language pathologists, dental professionals, physicians (e.g., otolaryngologists), lactation professionals, and others around the world are generating a significant body of literature on the relatedness of mouth and airway development, function, disruptions, and disorders. Early assessment and intervention are suggested in the literature. Yet, there is a dearth of professional education and assessment/treatment protocols for children birth to 7-years of age.

This presentation reviews relevant literature on mouth and airway relationships as they impact feeding, motor-speech, and respiratory development and function in children from birth to age 7. Suggestions will be made for next steps in professional education, systematic assessment and treatment protocols and practice.

Typical Mouth, Airway Development and Function supports the crucial life processes of eating, drinking, speaking, and breathing. This development begins in the first trimester of pregnancy from five mesodermal elevations. Approximately fifty percent of jaw and tongue growth occurs before birth, and the jaws are the gateway to the airway and mouth (Page, 2003).

Full-term babies typically have adequate structures for feeding, vocalizing, and breathing (Fayoux, Marciniak, Devisme, & Storme, 2008). Readiness to feed is based on functional maturity levels in the suck-swallow processing and respiration (Lau, 2015). Significant jaw, lip, and tongue growth occurs during the first two years of life. By age 2, a child has adult-like feeding skills and is combining words in speech.

During the 2 to 7-year period, gradual mouth, face, and head growth continues with structures being shaped by breathing, eating, drinking, and speaking (Boyd, 2011; Morris, 2003). Craniofacial dimensions change at differing rates and ages (Jahanbin, Rashed, Yazdani, Sharhri, & Kianifar, 2013). The child has an adult-like vocal tract by age 4, the skull is essentially adult-sized by age 6, and 80 to 90 percent of jaw bone growth occurs by age 8 (Page, 2003).

Disruptions in Mouth and Airway Development/Function can begin in utero. These include cleft lip and/or palate in the first trimester of pregnancy; tethered oral tissues restricting tongue, lip, and cheek range of motion; and, limited development of sucking pads near the end of gestation.

Post birth, mouth breathing has been correlated to occur in children with a low resting tongue position that often leads to a high, narrow palate; enlarged tonsils and adenoids; problems with tooth eruption and decay; cardiac problems; sleep disordered breathing, and tongue thrust swallow patterns (Guilleminault & Huang, in press; Marangu, Jowi, Aswani, Wambani, & Nduati, 2014). Detrimental oral habits (e.g., thumb or digit sucking, etc.) also result in high, narrow palates; dental malocclusions; and narrowed airways (Dimberg, Lennartsson, Söderfeldt, & Bondemark, 2011; Heimer, Tornisiello Katz, & Rosenblatt, 2008). Additionally, delayed and disrupted feeding skills lead to problems with jaw, lip, and tongue development, as well as tooth eruption (Grace, Oddy, Bulsara, & Hands, 2017).

While mouth and airway disruptions result from genetic and environmental factors, epigenetic science also indicates the presence of genetic changes in oral and airway structures relative to changes in available foods and feeding practices (Boyd, 2011). And, the disruptions discussed here are reportedly on the rise.

Assessment of Disruptions in Mouth and Airway Development and Function facilitates appropriate treatment planning and intervention. Measurements identifying these disruptions provide the clinician with
standardized documentation that can be communicated to other professionals, provide justification for therapeutic intervention, and provide a more appropriate standard of care.

Assessments evaluate structures and functional abilities. Common measurement protocols for children consist of Lingual Frenulum Protocols (Marchesan, 2012; Martinelli, 2012; Olivi, Signore, Olivi, & Genovese, 2012), oral mechanism examinations, Mallampati scores, Brodsky’s tonsil assessment (Kumar, et. al 2014), measurement of lip mobility and force (Sjogreen, Lohmander, & Kiliarids, 2011), as well as the assessment of feeding, swallowing, and motor-speech skills.

Additionally, parents and professionals use questionnaires and diaries to document problems in sleep patterns of children with airway concerns. Two simple questionnaires are the BEARS (Bedtime problems, Excessive daytime sleepiness, Awakenings during the night, Regularity and duration of sleep, Snoring) and the Pediatric Sleep Questionnaire (Chervine, 2000).

_Treatment of Disruptions in Mouth and Airway Development/Function_ follows a logical, hierarchical pathway for correction. Problems with tethered oral tissues, upper airway patency, and velopharyngeal functioning disrupt the foundations for appropriate mouth and airway development and function (i.e., breathing, eating, drinking, swallowing, and speaking).

Appropriately trained speech-language pathologists (SLPs) can help identify structural and functional deficits and _collaborate_ with other professionals who treat these problems. Otolaryngologists, dentists, oral surgeons, and others perform surgical and/or other interventions (e.g., palatal expansion, myofunctional appliances, braces, etc.) to establish adequate orofacial, oronasal, and oropharyngeal structures ready for appropriate function (i.e., breathing, eating, drinking, swallowing, speaking).

Recently, researchers have established the importance of orofacial myofunctional re-education in addition to opening the airway via surgical or dental processes (Camacho, et al., 2015; Guilleminault & Huang, in press; Guilleminault & Sullivan, 2014). When the airway is opened without muscle re-education, airway patency is frequently re-compromised as the child ages.

Detrimental oral habits (e.g., thumb, digit, and prolonged pacifier sucking) contribute to negative orofacial and oronasal structural differences in children. These must be remediated as part of dental work to avoid regression. Once airway patency is established and noxious habits are eliminated, treatment practices can focus on neuromuscular interventions (He, Stavropoulos, Hagberg, Hakeberg, & Mohlin, 2013). The establishment of nasal breathing is a crucial part of this process.

Tethered oral tissues (i.e., tongue, lip, and buccal ties) are also revised by otolaryngologists, dentists, and other surgeons. Appropriately trained SLPs provide neuromuscular re-education to children before and after surgical intervention (Ferres-Amat, et al., 2016; Marchesan, 2012). Treatment involves working with these structures to attain functional movement for breathing, eating, drinking, swallowing, and speaking. This re-education usually involves _appropriate oral exercise_ often prescribed by the surgeon and an orofacial myofunctional therapist. However, all treatments involve significant work with the _functions of breathing, feeding, swallowing, eating, drinking, and speaking_ which SLPs are trained to do. SLP treatment sessions _focus on these functions_ with exercise being an ancillary activity done daily at home by the client.
References


